Lossy CSI-FISH: a practical and provable secure isogeny-based signature

Federico Pintore

Mathematical Institute, University of Oxford, UK

Joint work with Ali El Kaafarani¹ and Schuichi Katsumata²

¹Mathematical Institute, University of Oxford (UK) and PQShield (UK) ²National Institute of Advanced Industrial Science and Technology (AIST), JP

Turin - 1st July 2020

Digital signatures are public-key cryptosystems

Digital signatures are public-key cryptosystems

Security of public-key cryptosystems must be formally proven (provable security)

Digital signatures are public-key cryptosystems

Security of public-key cryptosystems must be formally proven (provable security)

Security proofs given under the assumption that a mathematical problem is hard

Digital signatures are public-key cryptosystems

Security of public-key cryptosystems must be formally proven (provable security)

Security proofs given under the assumption that a mathematical problem is hard

Discrete logarithm problem over elliptic curves (ECDLP) supposed hard

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Post-quantum Cryptography: cryptosystems from mathematical problems (supposed to be) hard even for quantum computers

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Post-quantum Cryptography: cryptosystems from mathematical problems (supposed to be) hard even for quantum computers

There is the need of new mathematical problems, hard for quantum computers

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Post-quantum Cryptography: cryptosystems from mathematical problems (supposed to be) hard even for quantum computers

There is the need of new mathematical problems, hard for quantum computers

Isogeny problem over elliptic curves supposed hard for quantum computers

Isogeny-based Cryptography: post-quantum schemes from the isogeny problem

- appealing solutions for encryption and key-exchange
- rather elusive to construct **digital signatures**

Isogeny-based Cryptography: post-quantum schemes from the isogeny problem

- appealing solutions for encryption and key-exchange
- rather elusive to construct **digital signatures**

- **2011** First efficient isogeny-based cryptosystem
- 2019 First efficient isogeny-based digital signature: CSI-FiSh

Isogeny-based Cryptography: post-quantum schemes from the isogeny problem

- appealing solutions for encryption and key-exchange
- rather elusive to construct **digital signatures**

- **2011** First efficient isogeny-based cryptosystem
- 2019 First efficient isogeny-based digital signature: CSI-FiSh

Problem: provable security of CSI-FiSh is rather weak (non-tight proof)

TIGHTNESS OF SECURITY PROOFS

An attacker able to break a cryptosystem CS with success probability $2^{-\delta_{CS}}$

can solve the hard problem P with success probability $2^{-\delta}$, where $2^{-\delta} \leq 2^{-\delta_{CS}}$

TIGHTNESS OF SECURITY PROOFS

An attacker able to break a cryptosystem CS with success probability $2^{-\delta_{CS}}$

can solve the hard problem P with success probability $2^{-\delta}$, where $2^{-\delta} \leq 2^{-\delta_{CS}}$

Example - CSI-FiSh

- $2\delta_{CS} + \log_2 Q_{RO} = \delta$ (classical attacker)
- Best know algorithm for solving P has $\delta = 128$
- $2\delta_{\text{CS}} + \log_2 Q_{\text{RO}} = \delta \ge 128 \Rightarrow \delta_{\text{CS}} \ge (128 \log_2 Q_{\text{RO}})/2$
- Assuming a rather modest $\log_2 Q_{RO} = 40$ we have $\delta_{CS} \ge (128 40)/2 = 44$

Problem: the security proof does not guarantee more than 44 bits of security

Problem: the security proof does not guarantee more than 44 bits of security

Bigger Problem: CSI-FiSh does not guarantee any bits of provable security

when we consider a quantum attacker ($3\delta_{CS} + 6\log_2 Q_{ORO} = \delta$)

Problem: the security proof does not guarantee more than 44 bits of security

Bigger Problem: CSI-FiSh does not guarantee any bits of provable security

when we consider a quantum attacker ($3\delta_{CS} + 6\log_2 Q_{ORO} = \delta$)

Increasing the parameters would increase δ (tradeoff with efficiency), but CSI-FiSh is specific to one set of parameters (CSIDH-512)!

Problem: the security proof does not guarantee more than 44 bits of security

Bigger Problem: CSI-FiSh does not guarantee any bits of provable security

when we consider a quantum attacker ($3\delta_{CS} + 6\log_2 Q_{ORO} = \delta$)

Increasing the parameters would increase δ (tradeoff with efficiency), but CSI-FiSh is specific to one set of parameters (CSIDH-512)!

A better security proof was needed

OUR CONTRIBUTION: LOSSY CSI-FISH

We propose a new signature scheme, Lossy CSI-FiSh, which is

- tightly secure under a decisional variant of the isogeny problem;
- proof of security holds also for quantum attackers;
- it is almost as efficient as CSI-FiSh
 - same signature size,
 - public key twice as large,
 - runtime for signing and verifying is (at most) twice as slow.

How? By means of a new lossy identification protocol.

- 1. Digital signatures and the Fiat-Shamir transform
- 2. What is a lossy identification protocol?
- 3. Our CISDH-based lossy identification protocol
- 4. Why a lossy identification protocol?
- 5. Security and efficiency of Lossy CSI-FiSh

A digital signature is composed by three PPT algorithms:

DS = (KeyGen, Sign, Verify)

A digital signature is composed by three PPT algorithms:

DS = (KeyGen, Sign, Verify)

Alice runs KeyGen to generate a pair of keys: (pk,sk)

A digital signature is composed by three PPT algorithms:

DS = (KeyGen, Sign, Verify)

Alice runs KeyGen to generate a pair of keys: (pk,sk)

For a message m, Alice runs Sign on (sk,m) to generate a signature σ on m

A digital signature is composed by three PPT algorithms:

DS = (KeyGen, Sign, Verify)

Alice runs KeyGen to generate a pair of keys: (pk,sk)

For a message m, Alice runs Sign on (sk,m) to generate a signature σ on m

Any **Bob** runs Verify on (pk, σ, m) to verify validity of σ

A digital signature is composed by three PPT algorithms:

DS = (KeyGen, Sign, Verify)

Alice runs KeyGen to generate a pair of keys: (pk,sk)

For a message m, Alice runs Sign on (sk,m) to generate a signature σ on m

Any **Bob** runs Verify on (pk, σ, m) to verify validity of σ

The digital signature DS is secure if an attacker knowing pk (but not sk) has negligible success probability in producing a pair (σ^* , m^{*}) s.t. Verify(pk, σ^* , m^{*}) = 1

Lossy CSI-FiSh - F. Pintore - Turin 2020

FIAT-SHAMIR TRANSFORM

Constructing secure and efficient digital signatures is complicated.

FIAT-SHAMIR TRANSFORM

Constructing secure and efficient digital signatures is complicated.

The Fiat-Shamir transform:

- turns a secure identification protocol into a secure digital signature
- it leads to **efficient signature** schemes

FIAT-SHAMIR TRANSFORM

Constructing secure and efficient digital signatures is complicated.

The Fiat-Shamir transform:

• turns a secure identification protocol into a secure digital signature

• it leads to **efficient signature** schemes

It has been widely used since its introduction (Crypto 1986)

ROADMAP

1. Digital signatures and the Fiat-Shamir transform

- 2. What is a lossy identification protocol?
- 3. Our CISDH-based lossy identification protocol
- 4. Why a lossy identification protocol?
- 5. Security and efficiency of Lossy CSI-FiSh

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

The prover holds a public key - secret key pair (pk,sk) $\in \mathscr{R}$,

and wants to prove to the verier they know sk, without revealing sk

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

The prover holds a public key - secret key pair (pk,sk) $\in \mathcal{R}$,

and wants to prove to the verier they know sk, without revealing sk

Prover

Verifier

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

The prover holds a public key - secret key pair (pk,sk) $\in \mathcal{R}$,

and wants to prove to the verier they know sk, without revealing sk

Prover $com \leftarrow P_1(pk, sk)$ com Verifier

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

The prover holds a public key - secret key pair (pk,sk) $\in \mathcal{R}$,

and wants to prove to the verier they know sk, without revealing sk

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

The prover holds a public key - secret key pair (pk,sk) $\in \mathcal{R}$,

and wants to prove to the verier they know sk, without revealing sk

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

The prover holds a public key - secret key pair (pk,sk) $\in \mathcal{R}$,

and wants to prove to the verier they know sk, without revealing sk

Let $\mathscr{R} \subset X \times Y$ be a binary relation. An identification protocol

 $ID = (IGen, P = (P_1, P_2), V)$

for \mathscr{R} is a three-move interactive protocol between a prover and a verifier.

Required properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- 2-Special Soundness

Let $\mathscr{R} \subset X \times Y$ be a binary relation. A lossy identification protocol

 $ID = (IGen, LossyIgen, P = (P_1, P_2), V)$

for \mathscr{R} is a **three-move interactive protocol** between a **prover** (holding a public keysecret key pair (pk,sk) $\in \mathscr{R}$) and a **verifier**.

Required properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- 2-Special Soundness

Let $\mathscr{R} \subset X \times Y$ be a binary relation. A lossy identification protocol

 $ID = (IGen, LossyIgen, P = (P_1, P_2), V)$

for \mathscr{R} is a **three-move interactive protocol** between a **prover** (holding a public keysecret key pair (pk,sk) $\in \mathscr{R}$) and a **verifier**.

Required properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness

Let $\mathscr{R} \subset X \times Y$ be a binary relation. A lossy identification protocol

 $ID = (IGen, LossyIgen, P = (P_1, P_2), V)$

for \mathscr{R} is a **three-move interactive protocol** between a **prover** (holding a public keysecret key pair (pk,sk) $\in \mathscr{R}$) and a **verifier**.

Required properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness

An **unbounded** adversary \mathscr{A} produces a

valid transcript for pk_{ls} with probability ϵ_{ls} .

Let $\mathscr{R} \subset X \times Y$ be a binary relation. A lossy identification protocol

 $ID = (IGen, LossyIGen, P = (P_1, P_2), V)$

for \mathscr{R} is a **three-move interactive protocol** between a **prover** (holding a statement-witness pair (X,W) $\in \mathscr{R}$) and a **verifier**.

Required properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness
- Indistinguishability of Lossy Statements

 $(\mathsf{pk}_{\mathsf{ls}}, \cdot) \leftarrow \mathsf{LossyIgen}(1^{\lambda})$

 $\operatorname{Adv}_{\mathscr{B}}^{\operatorname{lossy}}(\lambda)$ in distinguishing real and lossy public keys is **negligible**

ROADMAP

- 1. Digital signatures and the Fiat-Shamir transform
- 2. What is a lossy identification protocol?
- 3. Our CISDH-based lossy identification protocol
- 4. Why a lossy identification protocol?
- 5. Security and efficiency of Lossy CSI-FiSh

- *G* finite abelian group
- X finite set

G acts freely and transitively on X

- $\star : G \times X \to X$ $(g, \mathsf{X}) \mapsto g \star \mathsf{X}$
- $1_G \star X = X;$
- $g_1 \star (g_2 \star \mathsf{X}) = g_1 g_2 \star \mathsf{X}$
- $g \mapsto g \star X$ is a bijection

- *G* finite abelian group
- X finite set

G acts freely and transitively on X

$$\star : G \times X \to X$$
$$(g, \mathsf{X}) \mapsto g \star \mathsf{X}$$

•
$$1_G \star X = X;$$

•
$$g_1 \star (g_2 \star \mathsf{X}) = g_1 g_2 \star \mathsf{X}$$

•
$$g \mapsto g \star X$$
 is a bijection

GAIP • hard to compute g given $g \star X$

- *G* finite abelian group
- X finite set

G acts freely and transitively on X $\star : G \times X \to X$ $(g, X) \mapsto g \star X$ $1_G \star X = X;$

• $g_1 \star (g_2 \star \mathsf{X}) = g_1 g_2 \star \mathsf{X}$

•
$$g \mapsto g \star X$$
 is a bijection

GAIP • hard to compute g given $g \star X$

G is determined

by a big prime p

G finite abelian group \rightarrow

X finite set

Ideal class group G acts freely and transitively on X $Cl(\mathcal{O})$ with $\mathcal{O} \subset \mathbb{Q}(\sqrt{-p})$

 $\star : G \times X \to X$ $(g, X) \mapsto g \star X$ $1_G \star X = X;$ G is determined $g_1 \star (g_2 \star X) = g_1 g_2 \star X$ by a big prime p $g \mapsto g \star X$ is a bijection

> GAIP • hard to compute g given $g \star X$

Fundamental assumption: $G = \langle \mathfrak{g} \rangle$, with known cardinality N (CSIDH-512 and CSI-FISH)

Fundamental assumption: $G = \langle \mathfrak{g} \rangle$, with known cardinality N (CSIDH-512 and CSI-FISH)

Computing class numbers of quadratic orders requires subexponential complexity.

CSI-FiSh performed a (record) class group computation

Lossy CSI-FiSh - F. Pintore - Turin 2020

Fundamental assumption: $G = \langle \mathfrak{g} \rangle$, with known cardinality N (CSIDH-512 and CSI-FISH)

Decisional CSIDH (D-CSIDH) problem - distinguish between the distributions

 $(E, H, \mathfrak{g}^a \star E, \mathfrak{g}^a \star H)$ and (E, H, E', H')

where $E, H, E', H' \leftarrow X, a \leftarrow \mathbb{Z}_N$.

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

Prover

Verifier

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

Prover

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

(ch = 0) resp := r,

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{ (E, a) \, | \, E = \mathfrak{g}^a \star E_0 \}$

 $\mathsf{pp} = (p, \mathfrak{g}, N, E_0 \in X)$

 $\mathscr{R}_{\mathsf{CSI-FiSh}} = \{(E, a) | E = \mathfrak{g}^a \star E_0\}$

 $pp = (p, g, N, E_0 \in X)$ $\mathcal{R}_{\text{Lossy CSI-FiSh}} = \{((E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), a) \mid E_i^{(1)} = g^a \star E_i^{(0)}, i = 1, 2\}$

 $pp = (p, g, N, E_0 \in X)$ $\mathcal{R}_{\text{Lossy CSI-FiSh}} = \{((E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), a) \mid E_i^{(1)} = g^a \star E_i^{(0)}, i = 1, 2\}$

 $pp = (p, g, N, E_0 \in X)$ $\mathcal{R}_{\text{Lossy CSI-FiSh}} = \{((E_1^{(0)}, E_2^{(0)}, E_1^{(1)}, E_2^{(1)}), a) \mid E_i^{(1)} = g^a \star E_i^{(0)}, i = 1, 2\}$

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness

An unbounded adversary \mathscr{A} produces a valid transcript for pk_{ls} with probability ϵ_{ls} .

$$\epsilon_{\rm ls} = \frac{1}{2} + \frac{1}{2N}$$

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness ($\epsilon_{\rm ls} = 1/2 + 1/2N)$
- Indistinguishability of Lossy Statements

 $(\mathsf{pk}_{\mathsf{ls}}, \cdot) \leftarrow \mathsf{LossyIgen}(1^{\lambda})$

 $\operatorname{Adv}_{\mathscr{B}}^{\operatorname{lossy}}(\lambda)$ in distinguishing real and lossy public keys is negligible.

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness ($\epsilon_{\rm ls} = 1/2 + 1/2N)$
- Indistinguishability of Lossy Statements

$$(\mathsf{pk}_{\mathsf{ls}}, \cdot) \leftarrow \mathsf{LossyIgen}(1^{\lambda})$$

 $\mathsf{Adv}_{\mathscr{B}}^{\mathsf{lossy}}(\lambda)$ in distinguishing real and lossy public keys is **negligible**.
Real public key: $(E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0, \mathfrak{g}^a \star E_1^{(0)}, \mathfrak{g}^a \star E_2^{(0)})$

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness ($\epsilon_{\rm ls} = 1/2 + 1/2N)$
- Indistinguishability of Lossy Statements

$$(\mathsf{pk}_{\mathsf{ls}}, \cdot) \leftarrow \mathsf{LossyIgen}(1^{\lambda})$$

 $\mathsf{Adv}_{\mathscr{B}}^{\mathsf{lossy}}(\lambda)$ in distinguishing real and lossy public keys is **negligible**.
Real public key: $(E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0, \mathfrak{g}^a \star E_1^{(0)}, \mathfrak{g}^a \star E_2^{(0)})$
Lossy public key: $(E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0, E', H')$

Properties

- Correctness
- Honest-Verifier Zero-Knowledge
- High Min-Entropy
- Perfect Unique Response
- Statistical Lossy Soundness ($\epsilon_{\rm ls} = 1/2 + 1/2N)$
- Indistinguishability of Lossy Statements

$$(\mathsf{pk}_{\mathsf{ls}}, \cdot) \leftarrow \mathsf{LossyIgen}(1^{\lambda})$$

$$\mathsf{Adv}_{\mathscr{B}}^{\mathsf{lossy}}(\lambda) \text{ in distinguishing real and lossy public keys is negligible.}$$

$$\mathsf{Real public key:} (E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0, \mathfrak{g}^a \star E_1^{(0)}, \mathfrak{g}^a \star E_2^{(0)})$$

$$\mathsf{Lossy public key:} (E_1^{(0)} = \mathfrak{g}^b \star E_0, E_2^{(0)} = \mathfrak{g}^c \star E_0, E', H')$$

$$\mathsf{Decisional CSIDH (D-CSIDH) \text{ problem - distinguish between the distributions}}$$

$$(E, H, \mathfrak{g}^a \star E, \mathfrak{g}^a \star H) \text{ and } (E, H, E', H')$$

where $E, H, E', H' \leftarrow X, a \leftarrow \mathbb{Z}_N$.

ROADMAP

- 1. Digital signatures and the Fiat-Shamir transform
- 2. What is a lossy identification protocol?
- 3. Our CISDH-based lossy identification protocol

- 4. Why a lossy identification protocol?
- 5. Security and efficiency of Lossy CSI-FiSh
WHY A LOSSY IDENTIFICATION PROTOCOL?

<u>Theorem</u> (Kiltz, Lyubashevsky, Schaffner - 2018)

Let ID be a lossy identification protocol (correct, Honest-Verifier Zero-Knowledge, α bits of min-entropy, Perfect Unique Response, ϵ_{ls} -statistical lossy soundness, indistinguishability of lossy statements), then

$$\operatorname{Adv}_{\mathscr{A}}^{\operatorname{su-cma}}(\lambda) \leq \begin{cases} \operatorname{Adv}_{\mathscr{B}}^{\operatorname{lossy}}(\lambda) + (Q_{H}+1) \cdot \epsilon_{\operatorname{ls}} + 2^{-\alpha+1} + \operatorname{Adv}_{\mathscr{D}}^{\operatorname{PRF}}(\lambda) & (\operatorname{ROM}) \\ \operatorname{Adv}_{\mathscr{B}}^{\operatorname{lossy}}(\lambda) + 8(Q_{H}+1)^{2} \cdot \epsilon_{\operatorname{ls}} + 2^{-\alpha+1} + \operatorname{Adv}_{\mathscr{D}}^{\operatorname{PRF}}(\lambda) & (\operatorname{QROM}) \end{cases}$$

and $\text{Time}(\mathscr{B}) = \text{Time}(\mathscr{D}) = \text{Time}(\mathscr{A}) + Q_H \approx \text{Time}(\mathscr{A}).$

ROADMAP

- 1. Digital signatures and the Fiat-Shamir transform
 - orm 🗸
- 2. What is a lossy identification protocol?
- 3. Our CISDH-based lossy identification protocol

- 4. Why a lossy identification protocol?
- 5. Security and efficiency of Lossy CSI-FiSh

CLASSICAL SECURITY OF LOSSY-CSI-FISH

We focus on CSIDH-512 parameters.

CLASSICAL SECURITY OF LOSSY-CSI-FISH

We focus on CSIDH-512 parameters.

				Loss	CSI-FiSh	
S	t	u	$ \sigma $	pk	Bits of security	pk
1	74	16	2405B	256B	127	64B
3	43	14	1403B	512B	126	192B
7	30	16	983B	1024B	125	448B
15	25	13	822B	2048B	124	960B
$2^6 - 1$	17	16	564B	8.2KB	122	4KB
$2^8 - 1$	14	11	468B	32.8KB	120	16.3KB
$2^{10} - 1$	12	7	404B	131KB	118	65.5KB
$2^{12} - 1$	10	11	339B	524KB	116	262KB
$2^{15} - 1$	8	16	274B	4MB	113	2MB
						·

QUANTUM SECURITY OF LOSSY-CSI-FISH

We focus on CSIDH-512 parameters.

			Conservative variant			Optimistic variant		
S	u	pk	t	$ \sigma $	Bits of security	t	$ \sigma $	Bits of security
1	16	256B	64	2080B	55	74	2405B	63
3	14	512B	37	1208B	54	43	1403B	62
7	16	1024B	26	852B	53	30	983B	61
15	13	2048B	21	691B	52	25	822B	60
$2^6 - 1$	16	8.2KB	15	497B	50	17	564B	58
$2^8 - 1$	11	32.8KB	12	401B	48	14	468B	56
$2^{10} - 1$	7	131KB	10	337B	46	12	404B	54
$2^{12} - 1$	11	524KB	9	305B	44	10	339B	52
$2^{15} - 1$	16	4MB	7	240B	41	8	274B	49

EFFICIENCY OF LOSSY-CSI-FISH

Costs are dominated by the computation of class group actions:

- Key Generation: 2S + 2 (S in CSI-FiSh)
- **Signing**: 2S (*S* in CSI-FiSh)
- Verifying: 2S (S in CSI-FiSh)

Estimated running times

(S, t, u)	Key Gen	Sign	Ver
$(2^{15} - 1,7,16)$	56m	800ms	800ms
$(2^3 - 1, 28, 16)$	920ms	3s	3s

Lossy CSI-FiSh - F. Pintore - Turin 2020

Thanks for your attention

Federico Pintore Mathematical Institute, University of Oxford

federico.pintore@maths.ox.ac.uk