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Digital signatures are public-key cryptosystems

Security of public-key cryptosystems must be formally proven (provable security)

Security proofs given under the assumption that a mathematical problem is hard

Discrete logarithm problem over elliptic curves (ECDLP) supposed hard 



Lossy CSI-FiSh - F. Pintore - Turin 2020

PRELIMINARIES

3

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption



Lossy CSI-FiSh - F. Pintore - Turin 2020

PRELIMINARIES

3

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time



Lossy CSI-FiSh - F. Pintore - Turin 2020

PRELIMINARIES

3

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC



Lossy CSI-FiSh - F. Pintore - Turin 2020

PRELIMINARIES

3

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Post-quantum Cryptography: cryptosystems from mathematical 
problems (supposed to be) hard even for quantum computers 



Lossy CSI-FiSh - F. Pintore - Turin 2020

PRELIMINARIES

3

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Post-quantum Cryptography: cryptosystems from mathematical 
problems (supposed to be) hard even for quantum computers 

There is the need of new mathematical problems, hard for quantum computers



Lossy CSI-FiSh - F. Pintore - Turin 2020

PRELIMINARIES

3

Elliptic Curve Cryptography (ECC): cryptosystems from the ECDLP assumption

P. Shor (1994): quantum algorithm to solve the ECDLP in polynomial time

The concrete possibility to construct quantum computers threatens ECC

Post-quantum Cryptography: cryptosystems from mathematical 
problems (supposed to be) hard even for quantum computers 

There is the need of new mathematical problems, hard for quantum computers

Isogeny problem over elliptic curves supposed hard for quantum computers 
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Isogeny-based Cryptography: post-quantum schemes from the isogeny problem 

• appealing solutions for encryption and key-exchange  

• rather elusive to construct digital signatures 

2011 - First efficient isogeny-based cryptosystem

2019 - First efficient isogeny-based digital signature: CSI-FiSh

Problem: provable security of CSI-FiSh is rather weak (non-tight proof)
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5

An attacker able to break a cryptosystem CS with success probability   

can solve the hard problem P with success probability , where   

2−δCS

2−δ 2−δ ≤ 2−δCS

Example - CSI-FiSh 

•   (classical attacker)                          

• Best know algorithm for solving P has   

•   

• Assuming a rather modest  we have 

2δ#$ + log2 Q%& = δ

δ = 128

2δ#$ + log2 Q%& = δ ≥ 128 ⇒ δ#$ ≥ (128 − log2 Q%&)/2

log2 Q%& = 40 δ#$ ≥ (128 − 40)/2 = 44
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A FRAGILE RELATIONSHIP

6

Problem: the security proof does not guarantee more than 44 bits of security

Bigger Problem: CSI-FiSh does not guarantee any bits of provable security  

when we consider a quantum attacker ( )                                             3δ#$ + 6 log2 Q)%& = δ

Increasing the parameters would increase  (tradeoff with efficiency), but              δ
CSI-FiSh is specific to one set of parameters (CSIDH-512)!               

A better security proof was needed
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We propose a new signature scheme, Lossy CSI-FiSh, which is 

• tightly secure under a decisional variant of the isogeny problem; 

• proof of security holds also for quantum attackers; 

• it is almost as efficient as CSI-FiSh 
• same signature size, 
• public key twice as large, 
• runtime for signing and verifying is (at most) twice as slow.

How? By means of a new lossy identification protocol.
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1. Digital signatures and the Fiat-Shamir transform 
 

2. What is a lossy identification protocol? 
 

3. Our CISDH-based lossy identification protocol 
 

4. Why a lossy identification protocol? 
 

5. Security and efficiency of Lossy CSI-FiSh
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A digital signature is composed by three PPT algorithms: 

DS = (*+,-+., $/0., 1+2/3,)

Alice runs KeyGen to generate a pair of keys: (pk,sk)  

For a message m, Alice runs Sign on (sk,m) to generate a signature  on mσ

Any Bob runs Verify on  to verify validity of (45, σ, 6) σ

The digital signature DS is secure if an attacker knowing pk (but not sk) has 

negligible success probability in producing a pair  s.t. (σ*, 6*)

1+2/3,(45, σ*, 6*) = 1
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10

Constructing secure and efficient digital signatures is complicated.

The Fiat-Shamir transform: 

• turns a secure identification protocol into a secure digital signature 

• it leads to efficient signature schemes

It has been widely used since its introduction (Crypto 1986)
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1. Digital signatures and the Fiat-Shamir transform  
 

2. What is a lossy identification protocol? 
 

3. Our CISDH-based lossy identification protocol 
 

4. Why a lossy identification protocol? 
 

5. Security and efficiency of Lossy CSI-FiSh
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Let  be a binary relation. An identification protocol  

                                                

for  is a three-move interactive protocol between a prover and a verifier.

ℛ ⊂ X × Y
:; = (:-+., < = (<1, <2), 1)

ℛ

Prover Verifier

>?6 ← <1(45, A5)
>?6

>B ← #B$+C>B

2+A4 ← <2(45, A5, >?6, >B) 2+A4

The prover holds a public key - secret key pair (pk,sk) ,   

and wants to prove to the verier they know sk, without revealing sk

∈ ℛ
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Let  be a binary relation. An identification protocol  

                                                

for  is a three-move interactive protocol between a prover and a verifier.

ℛ ⊂ X × Y
:; = (:-+., < = (<1, <2), 1)

ℛ

Prover Verifier

>?6 ← <1(45, A5)
>?6

>B ← #B$+C>B

2+A4 ← <2(45, A5, >?6, >B) 2+A4

1/0 ← 1(45, >?6, >B, 2+A4)1/0

The prover holds a public key - secret key pair (pk,sk) ,   

and wants to prove to the verier they know sk, without revealing sk

∈ ℛ
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Required properties 
- Correctness 
- Honest-Verifier Zero-Knowledge 
- High Min-Entropy 
- Perfect Unique Response 
- Statistical Lossy Soundness

An unbounded adversary  produces a 
valid transcript for  with probability .

E
45FA ϵFA

Let  be a binary relation. A lossy identification protocol  

                                                 

for  is a three-move interactive protocol between a prover (holding a public key- 

secret key pair (pk,sk) ) and a verifier.

ℛ ⊂ X × Y
:; = (:-+., D?AA,:0+., < = (<1, <2), 1)

ℛ
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Let  be a binary relation. A lossy identification protocol  

                                                

for  is a three-move interactive protocol between a prover (holding a statement-

witness pair (X,W) ) and a verifier.

ℛ ⊂ X × Y
:; = (:-+., D?AA,:-+., < = (<1, <2), 1)

ℛ
∈ ℛ

Required properties 
- Correctness 
- Honest-Verifier Zero-Knowledge 
- High Min-Entropy 
- Perfect Unique Response 
- Statistical Lossy Soundness 
- Indistinguishability of Lossy Statements

               
 in distinguishing real and lossy public keys is negligible

(45FA, ⋅ ) ← D?AA,:0+.(Hλ)
IJKF?AA,

ℬ (λ)
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2. What is a lossy identification protocol? 
 

3. Our CISDH-based lossy identification protocol 
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5. Security and efficiency of Lossy CSI-FiSh
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(g, O) ↦ g ⋆ O

1G ⋆ O = O;

g1 ⋆ (g2 ⋆ O) = g1g2 ⋆ O

g ↦ g ⋆ O

Fundamental assumption: , with known cardinality  (CSIDH-512 and CSI-FISH)G = ⟨W⟩ N

Computing class numbers of quadratic orders requires subexponential complexity. 
 

CSI-FiSh performed a (record) class group computation

• hard to compute  given g g ⋆ OGAIP

G is determined 
by a big prime p

Ideal class group  
 with Cl(Q)

Q ⊂ ℚ( −p)
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THE CSIDH SETTING

•  finite abelian group 

•  finite set

G

X

 acts freely and transitively on  

                 
                           

•                          

•  

•  is a bijection                                                     

G X

⋆ : G × X → X
(g, O) ↦ g ⋆ O

1G ⋆ O = O;

g1 ⋆ (g2 ⋆ O) = g1g2 ⋆ O

g ↦ g ⋆ O

Fundamental assumption: , with known cardinality  (CSIDH-512 and CSI-FISH)G = ⟨W⟩ N

• hard to compute  given g g ⋆ OGAIP

G is determined 
by a big prime p

Ideal class group  
 with Cl(Q)

Q ⊂ ℚ( −p)

X is the set of 
supersingular elliptic 

curves  s.t. E/Sp
T.Jp(E) ≃ Q

Decisional CSIDH (D-CSIDH) problem - distinguish between the distributions 
                                          and  

where .

(E, H, Wa ⋆ E, Wa ⋆ H) (E, H, E′ , H′ )
E, H, E′ , H′ ← X, a ← ℤN
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44 = (p, W, N, E0 ∈ X)

ℛ#$:−[/$B = {(E, a) |E = Wa ⋆ E0}

Prover Verifier
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CSI-FISH ID
44 = (p, W, N, E0 ∈ X)

ℛ#$:−[/$B = {(E, a) |E = Wa ⋆ E0}

Prover Verifier

r ← ℤN, >?6 := Wr ⋆ E0
>?6

>B ← {0,1}>B

E0 EWa

>?6
Wr

(>B = \) 2+A4 := r, 2+A4(>B = H) 2+A4 := a − r

Wa−r

1/0 (>B = \) >?6 = = W2+A4 ⋆ E0

(>B = H) E = = W2+A4 ⋆ >?6
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OUR LOSSY ID
44 = (p, W, N, E0 ∈ X)

Prover Verifier

r ← ℤN, >?6 := Wr ⋆ E0
>?6

>B ← {0,1}>B
2+A4
1/0

E0 EWa

>?6
Wr

(>B = \) 2+A4 := r, (>B = H) 2+A4 := a − r

Wa−r

(>B = \) >?6 = = W2+A4 ⋆ E0

(>B = H) E = = W2+A4 ⋆ >?6

E(1)
i = Wa ⋆ E(0)

i , i = 1,2}
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E(1)
1Wa

>?61

Wr Wa−r

E(1)
2 E(0)

2Wa

>?62

WrWa−r

E0

Wc Wb

ℛD?AA, #$:−[/$B = {((E(0)
1 , E(0)

2 , E(1)
1 , E(1)

2 ), a) |
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OUR LOSSY ID
44 = (p, W, N, E0 ∈ X)

Prover Verifier

r ← ℤN, >?6 := Wr ⋆ E0
>?6

>B ← {0,1}>B
2+A4
1/0

(>B = \) 2+A4 := r,

(>B = \) >?6 = = W2+A4 ⋆ E0

(>B = H) E = = W2+A4 ⋆ >?6

E(1)
i = Wa ⋆ E(0)

i , i = 1,2}

(>B = H) 2+A4 := a − r
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OUR LOSSY ID
44 = (p, W, N, E0 ∈ X)

Prover Verifier

r ← ℤN,
>?6 = (>?61, >?62)

>B ← {0,1}>B
2+A4
1/0

(>B = \) 2+A4 := r, (>B = H) 2+A4 := a − r

(>B = \)
(>B = H)

ℛD?AA, #$:−[/$B = {((E(0)
1 , E(0)

2 , E(1)
1 , E(1)

2 ), a) |

E(1)
i = Wa ⋆ E(0)

i , i = 1,2}

E(0)
1

E(1)
1Wa

>?61

Wr Wa−r

E(1)
2 E(0)

2Wa

>?62

WrWa−r

E0

Wc Wb

>?6i = Wr ⋆ E(i)
0

>?6i = = W2+A4 ⋆ E(0)
i

E(1)
i = = W2+A4 ⋆ >?6i
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Properties 
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- High Min-Entropy 
- Perfect Unique Response
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OUR LOSSY ID
Properties 
- Correctness 
- Honest-Verifier Zero-Knowledge 
- High Min-Entropy 
- Perfect Unique Response 
- Statistical Lossy Soundness 

An unbounded adversary  produces a 
valid transcript for  with probability .

E
45FA ϵFA

ϵFA = 1
2 + 1

2N
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OUR LOSSY ID
Properties 
- Correctness 
- Honest-Verifier Zero-Knowledge 
- High Min-Entropy 
- Perfect Unique Response 
- Statistical Lossy Soundness  
- Indistinguishability of Lossy Statements

(ϵFA = 1/2 + 1/2N )

 
 in distinguishing real and lossy public keys is negligible.

(45FA, ⋅ ) ← D?AA,:0+.(Hλ)
IJKF?AA,

ℬ (λ)
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OUR LOSSY ID
Properties 
- Correctness 
- Honest-Verifier Zero-Knowledge 
- High Min-Entropy 
- Perfect Unique Response 
- Statistical Lossy Soundness  
- Indistinguishability of Lossy Statements

(ϵFA = 1/2 + 1/2N )

 
 in distinguishing real and lossy public keys is negligible.

(45FA, ⋅ ) ← D?AA,:0+.(Hλ)
IJKF?AA,

ℬ (λ)
Real public key:  (E(0)

1 = Wb ⋆ E0, E(0)
2 = Wc ⋆ E0, Wa ⋆ E(0)

1 , Wa ⋆ E(0)
2 )

Lossy public key:  (E(0)
1 = Wb ⋆ E0, E(0)

2 = Wc ⋆ E0, E′ , H′ )
Decisional CSIDH (D-CSIDH) problem - distinguish between the distributions 
                                          and  

where .

(E, H, Wa ⋆ E, Wa ⋆ H) (E, H, E′ , H′ )
E, H, E′ , H′ ← X, a ← ℤN
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ROADMAP
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1. Digital signatures and the Fiat-Shamir transform  
 

2. What is a lossy identification protocol? 
 

3. Our CISDH-based lossy identification protocol 
 

4. Why a lossy identification protocol? 
 

5. Security and efficiency of Lossy CSI-FiSh
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WHY A LOSSY IDENTIFICATION PROTOCOL?

Theorem (Kiltz, Lyubashevsky, Schaffner - 2018) 
Let  be a lossy identification protocol (correct, Honest-Verifier Zero-Knowledge,  

 bits of min-entropy, Perfect Unique Response, -statistical lossy soundness, 
indistinguishability of lossy statements), then  

          

 
and . 

:;
α ϵFA

IJKA]−>6^
E (λ) ≤ {IJKF?AA,

ℬ (λ) + (QH + 1) ⋅ ϵFA + 2−α+1 + IJK<%[
_ (λ) (ROM)

IJKF?AA,
ℬ (λ) + 8(QH + 1)2 ⋅ ϵFA + 2−α+1 + IJK<%[

_ (λ) (QROM)

`/6+(ℬ) = `/6+(_) = `/6+(E) + QH ≈ `/6+(E)
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1. Digital signatures and the Fiat-Shamir transform  
 

2. What is a lossy identification protocol? 
 

3. Our CISDH-based lossy identification protocol 
 

4. Why a lossy identification protocol? 
 

5. Security and efficiency of Lossy CSI-FiSh
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CLASSICAL SECURITY OF LOSSY-CSI-FISH
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We focus on CSIDH-512 parameters.
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We focus on CSIDH-512 parameters.
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QUANTUM SECURITY OF LOSSY-CSI-FISH
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We focus on CSIDH-512 parameters.
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EFFICIENCY OF LOSSY-CSI-FISH

33

Costs are dominated by the computation of class group actions: 

• Key Generation:  

• Signing:  

• Verifying: 

2S + 2 (S in CSI-FiSh)

2S (S in CSI-FiSh)

2S (S in CSI-FiSh)

Estimated running times

Key Gen Sign Ver

56m 800ms 800ms

920ms 3s 3s

(S, t, u)
(215 − 1,7,16)

(23 − 1,28,16)
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